Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chem Biodivers ; 18(11): e2100674, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1615945

ABSTRACT

Chemical investigation on a Streptomyces sp. strain MS180069 isolated from a sediment sample collected from the South China Sea, yielded the new benzo[f]isoindole-dione alkaloid, bhimamycin J (1). The structure was determined by extensive spectroscopic analysis, including HRMS, 1D, 2D NMR, and X-ray diffraction techniques. A molecular docking study revealed 1 as a new molecular motif that binds with human angiotensin converting enzyme2 (ACE2), recently described as the cell surface receptor responsible for uptake of 2019-CoV-2. Using enzyme assays we confirm that 1 inhibits human ACE2 79.7 % at 25 µg/mL.


Subject(s)
Alkaloids/chemistry , Geologic Sediments/microbiology , Isoindoles/chemistry , Streptomyces/chemistry , Alkaloids/metabolism , Alkaloids/pharmacology , Alkaloids/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/virology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Isoindoles/isolation & purification , Isoindoles/metabolism , Isoindoles/pharmacology , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , SARS-CoV-2/isolation & purification , Streptomyces/isolation & purification , Streptomyces/metabolism , COVID-19 Drug Treatment
2.
Bioorg Chem ; 117: 105455, 2021 12.
Article in English | MEDLINE | ID: covidwho-1487613

ABSTRACT

The main protease (Mpro or 3CLpro) of SARS-CoV-2 virus is a cysteine enzyme critical for viral replication and transcription, thus indicating a potential target for antiviral therapy. A recent repurposing effort has identified ebselen, a multifunctional drug candidate as an inhibitor of Mpro. Our docking of ebselen to the binding pocket of Mpro crystal structure suggests a noncovalent interaction for improvement of potency, antiviral activity and selectivity. To test this hypothesis, we designed and synthesized ebselen derivatives aimed at enhancing their non-covalent bonds within Mpro. The inhibition of Mpro by ebselen derivatives (0.3 µM) was screened in both HPLC and FRET assays. Nine ebselen derivatives (EBs) exhibited stronger inhibitory effect on Mpro with IC50 of 0.07-0.38 µM. Further evaluation of three derivatives showed that EB2-7 exhibited the most potent inhibition of SARS-CoV-2 viral replication with an IC50 value of 4.08 µM in HPAepiC cells, as compared to the prototype ebselen at 24.61 µM. Mechanistically, EB2-7 functions as a noncovalent Mpro inhibitor in LC-MS/MS assay. Taken together, our identification of ebselen derivatives with improved antiviral activity may lead to developmental potential for treatment of COVID-19 and SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Isoindoles/chemistry , Organoselenium Compounds/chemistry , SARS-CoV-2/enzymology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/virology , Catalytic Domain , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Coronavirus 3C Proteases/metabolism , Drug Design , Fluorescence Resonance Energy Transfer , Humans , Isoindoles/metabolism , Isoindoles/pharmacology , Isoindoles/therapeutic use , Molecular Docking Simulation , Organoselenium Compounds/metabolism , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Tandem Mass Spectrometry , COVID-19 Drug Treatment
3.
Viruses ; 13(8)2021 08 15.
Article in English | MEDLINE | ID: covidwho-1355053

ABSTRACT

We compared the electrostatic properties of the spike proteins (S-proteins) of three coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2, and their interactions with photosensitizers (PSs), octacationic octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) and monocationic methylene blue (MB). We found a major common PS binding site at the connection of the S-protein stalk and head. The molecules of Zn-PcChol8+ and MB also form electrostatic encounter complexes with large area of negative electrostatic potential at the head of the S-protein of SARS-CoV-2, between fusion protein and heptad repeat 1 domain. The top of the SARS-CoV spike head demonstrates a notable area of electrostatic contacts with Zn-PcChol8+ and MB that corresponds to the N-terminal domain. The S-protein protomers of SARS-CoV-2 in "open" and "closed" conformations demonstrate different ability to attract PS molecules. In contrast with Zn-PcChol8+, MB possesses the ability to penetrate inside the pocket formed as a result of SARS-CoV-2 receptor binding domain transition into the "open" state. The existence of binding site for cationic PSs common to the S-proteins of SARS-CoV, SARS-CoV-2, and MERS-CoV creates prospects for the wide use of this type of PSs to combat the spread of coronaviruses.


Subject(s)
Choline/metabolism , Indoles/metabolism , Isoindoles/metabolism , Middle East Respiratory Syndrome Coronavirus/chemistry , Organometallic Compounds/metabolism , Photosensitizing Agents/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Zinc Compounds/metabolism , Binding Sites , Indoles/chemistry , Methylene Blue/metabolism , Models, Molecular , Molecular Dynamics Simulation , Organometallic Compounds/chemistry , Protein Conformation , Protein Domains , Protein Subunits/chemistry , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Static Electricity
4.
ChemMedChem ; 16(2): 340-354, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-1044678

ABSTRACT

Inhibition of coronavirus (CoV)-encoded papain-like cysteine proteases (PLpro ) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure-activity relationships (SAR) of the noncovalent active-site directed inhibitor (R)-5-amino-2-methyl-N-(1-(naphthalen-1-yl)ethyl) benzamide (2 b), which is known to bind into the S3 and S4 pockets of the SARS-CoV PLpro . Moreover, we report the discovery of isoindolines as a new class of potent PLpro inhibitors. The studies also provide a deeper understanding of the binding modes of this inhibitor class. Importantly, the inhibitors were also confirmed to inhibit SARS-CoV-2 replication in cell culture suggesting that, due to the high structural similarities of the target proteases, inhibitors identified against SARS-CoV PLpro are valuable starting points for the development of new pan-coronaviral inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Benzamides/pharmacology , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Isoindoles/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Benzamides/chemical synthesis , Benzamides/metabolism , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Isoindoles/chemical synthesis , Isoindoles/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL